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The problem of determining the critical power spectral density (PSD) function of
a partially speci"ed stationary Gaussian load process which maximizes the response of
a linear system has been considered. The partial speci"cation of the load is given only in
terms of its total average energy. The critical input PSD turns out to be highly narrow
banded which fails to capture the erratic nature of the excitation. Consequently, the trade-o!
curve between the maximum linear system response and the disorder in the input process,
quanti"ed in terms of its entropy rate, has been generated. The Pareto optimization theory is
used to tackle the con#icting objectives of simultaneous maximization of the system
response and the input entropy rate. Consequently, the non-linear multi-objective
optimization has been carried out using a Multi-criteria Genetic Algorithm scheme. An
illustrative example of determining the critical input of an axially vibrating rod excited by
a partially speci"ed stationary Gaussian load process has been considered.
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1. INTRODUCTION

The reliable and complete description of random excitation necessary for the response
analysis of engineering structures are di$cult to obtain on numerous occasions. For example,
the description of seismic excitations is fraught with uncertainties due to various factors such
as the nature and number of earthquakes, its travel path, the local geological e!ects and
scarcity of recorded data. The method of critical excitation is primarily developed to deal with
the response analysis of engineering systems to incompletely speci"ed inputs. The method is
based on the philosophy that the random input can only be speci"ed partially with
con"dence. The missing information about the input required for the complete response
analysis is determined such that the damage to a given system is maximized.

The determination of critical excitation constitutes an inverse problem of engineering
system analysis. Early studies in the context of electrical circuit had been carried out by Tufts
and Shnidman [1]; and Papoulis [2, 3] who determined the critical input wave forms with the
constraints on the total energy and peak values which maximizes the linear system response.
In the context of earthquake engineering, the problem of obtaining the critical seismic input
was initiated by Drenick [4]. The subsequent research was primarily focussed to evolve the
same concept (e.g. references [5, 6]). The aforementioned studies were primarily carried out in
0022-460X/01/300871#11 $35.00/0 ( 2001 Academic Press
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the deterministic framework. The problem of characterizing the critical excitation in terms
of a Gaussian random process has been proposed by Iyengar and Manohar [7, 8]. The list
of studies conducted in the context of determining the critical excitation cited above is by no
means complete. To place the scope of this paper in proper perspective, only a few papers
from the vast number of the relevant literature is mentioned above. The reader may further
refer to Sarkar [9] for an elaborate review of previous works conducted in this area.

From the previous study carried out in the context of earthquake excitation [9, 10], the
worst input turned out to be highly narrow-banded when the available information of the
excitation is given in terms of its total average energy and the mean zero-crossing rate, as to
be expected intuitively. The narrow-banded nature of the input actually represents the
resonant phenomenon and thus, fails to account for the random nature of the input. To
circumvent this problem, the entropy rate of the input is proposed as a measure of disorder
to the critical excitation which captures its erratic nature. Consequently, the critical
excitation is rede"ned as the input which simultaneously maximizes the system response
and the input entropy rate. It also emerges that the maximization of the input entropy rate
criteria alone demands the response to be highly broad-banded. Thus, the response
maximization criterion is in direct con#ict with the requirement of the input entropy rate
maximization. This constitutes a typical non-linear multi-criteria optimization problem
with con#icting objectives. There are two general approaches to solve such a problem,
namely, the preference and non-preference methods. The preference method makes use of
explicit information about the relative importance of di!erent objective criteria in order to
identify a best overall solution. This approach was adopted in the previous work [9, 10]
using the calculus of variation and linear programming methods to solve the problem
indirectly. In this paper, the non-preference method often referred to as Pareto optimization
technique has been used to solve the problem directly.

In Pareto optimization procedures, no assumption about the relative importance of the
di!erent objective criteria is made a priori. But instead, it identi"es a "eld of solutions that
are all considered to be of equal rank from the perspective of all objective criteria.
Consequently, it is then left to the designer to choose a solution from these equal-rank
solutions, based on knowledge of the trade-o! between performance in di!erent objective
functions. The decision about choosing a critical input can be made based on various
criteria such as the risk level acceptable to the designer, the entropy rate associated with the
input obtained from recorded data, etc.

Furthermore, a powerful numerical optimization procedure based on Multi-criteria
Genetic Algorithm (MGA) has been used to deal with the non-linear optimization problem.
The method has been applied to develop the critical excitation of a linear
multi-degree-of-freedom system based on various response maximization criteria with the
constraint on the total energy of the input.

2. MATHEMATICAL FORMULATION

2.1. INPUT SPECIFICATION

In the present study, the excitation driving the linear system is modelled as a stationary
Gaussian random process with unknown PSD S (u). The total average energy E is assumed
to be known and given by

E"P
u

u1

S (u) du, (1)

where (u
1
, u

2
) is the bandwidth of the excitation, also assumed to be known.
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2.2. INPUT ENTROPY RATE

In tackling the problem of critical excitation, one essentially deals with an incompletely
speci"ed probability space. In fact, a similar situation arises in various branches of
engineering. The principal of maximum entropy has been developed to handle these
problems [11, 12].

For a continuously distributed random variables X, the expression for entropy is

H
x
"P

=

~=

p (x) ln p(x) dx, (2)

where p(x) is the probability density function (pdf ) of X. According to the maximum
entropy principle, the most uncertain pdf of X can be found by maximizing H

x
subject to

constraints re#ecting the properties of X. For example, the maximum entropy probability
distribution of a continuously distributed random variable with known range (x

1
, x

2
) is

a uniform distribution between (x
1
, x

2
). The principle of maximum entropy [11] has been

extended to the random process where one has to consider the entropy rate of the signal.
For an incompletely speci"ed band-limited stationary random process w(t), the unspeci"ed
parameter of the process can be determined by maximizing the entropy rate of the process,

HM
W
" lim

n?=

1

n P
=

~=

p (w) ln p (w) dw, (3)

where p(w) is the n-dimensional joint pdf of the random process w(t) sampled at t
1
,2, t

n
.

For a stationary band-limited Gaussian random process, the entropy rate can be expressed
in terms of its PSD function S(u) as in reference [11],

HM
W
"lnJ2ne#

1

2(u
1
!u

2
) P

u2

u1

lnS (u) du. (4)

It can easily be shown that the maximum entropy power spectral density of a Gaussian
random process with given variance E":u2

u1
S (u) du is a band-limited white noise as given

by

S (u)"
E

(u
1
!u

2
)
. (5)

2.3. RESPONSE SPECIFICATION

From the linear random vibration analysis, the stationary response variance of a linear
system at any point x, driven by a stationary random excitation, can be expressed as in
reference [13]:

p2 (x)"P
u2

u1

H (u, x)S (u) du, (6)

where H(u, x) is the frequency response function of the linear system.
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The expression for the mean response zero crossing rate is given by [13]

l(0)"
1

n
[:u2

u1
u2H(u, x)S (u) du]1@2

[:u2
u1

H (u, x)S (u) du]1@2
. (7)

The aforementioned response quantities are indicators of two major failure criteria of the
system. The maximization of the response variance in fact maximizes the system failure due
to the extreme events. On the other hand, the maximization of the mean zero-crossing rate
maximizes the fatigue failure of the system.

2.4. OPTIMIZATION PROBLEM

In this section, the optimization problem of maximizing the response quantities as well as
maximizing the input entropy rate is formulated.

We discretize the input PSD function S (u) by the expression

S (u)"
N
+
n/1

a
n
d (u!u

n
) , (8)

where d( )) is the Dirac-delta function and a
n
, n"1,2,N are the optimization variables

which determine the shape of critical input PSD function S(u).
Consequently, the multi-criteria optimization problem, involving the two aforementioned

response quantities and the input entropy rate, is stated below.

2.4.1. Case-A

Firstly, we consider the problem of maximizing the response variance p2 and the term
involving input PSD in the expression of its entropy rate in equation (4), namely HI

W
"

:u2
u2

ln S(u) du. Using the discretized form of the input PSD in equation (8), the optimization
problem of maximizing p2 and HI

W
can be posed as

maxp2"
N
+
n/1

a
n
H (u

n
, x), maxHI

W
"du

N
+
n/1

lnA
a
n

duB , (9, 10)

subject to

N
+
n/1

a
n
"E. (11)

2.4.2. Case-B

Next we consider the problem of optimizing the mean zero-crossing rate l (0) in
equation (7) and the scaled input entropy rate HI

W
. Using the discretized form of the input

PSD given in equation (8), this problem can again be expressed as

maxnl (0)"
[+N

n/1
u2

n
H(u

n
, x)a

n
]1@2

[+N
n/1

H(u
n
, x)a

n
]1@2

, maxHI
W
"du

N
+
n/1

lnA
a
n

duB , (12, 13)

subject to

N
+
n/1

a
n
"E. (14)
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It should be noted that the maximization of p2 under the constraint of E constitutes
a standard problem of linear programming. The result is shown to be a Dirac-delta function
representing a harmonic excitation indicating the resonant phenomenon [9, 10]. On the
other hand, the maximization of HI

W
under the constraint of E can be performed using

calculus of variation and is given by a band-limited noise as discussed before. Thus, the
maximization of p2 demands the input to be highly narrow-banded whereas the
maximization of HI

W
requires the input to be highly broad-banded. One can easily observe

that the two objective functions are directly in con#ict. The maximization of the mean
zero-crossing rate l (0) under the constraint of E is highly non-linear and requires the
solution of the non-linear simultaneous equations, which does not permit simple solutions,
unlike the "rst case discussed above.

2.5. PARETO OPTIMIZATION PROCEDURE

In numerous engineering applications, the designer has to consider several compromise
designs by trading o! the performances between various objectives with con#icting
requirements. The method of Pareto optimization is speci"cally suitable to tackle such
problems. This method makes no assumption about the relative importance of di!erent
objective criteria, but rather identi"es a "eld of solutions that are all considered to be of
equal rank in the sense that no particular solution is better than any other with respect to all
objective criteria. It is then left to the designer to choose a solution from the pool of
equal ranking solutions, based on the knowledge of the trade-o! between performances
of di!erent objective criteria (Pareto design). The concept of multi-criteria Pareto
optimization is brie#y explained below.

The multi-criteria optimization problem can be stated as follows:

maximize f (x)"[ f
1
(x), f

2
(x),2, f

Q
(x)]T, (15)

subject to g(x))0, h (x)"0, (16)

where x"[x
1
, x

2
,2, x

n
]T is the vector of n design variables, f(x) is the vector of

i"1, 2,2,Q objective functions f
i
(x) that are each to be maximized for the design subject

to the equality and non-equality constraints: h (x)"0 and g (x))0. A design x0 is Pareto
optimal for the problem, if there exists no other design x for which f

i
(x)*f

i
(x0) for

i"1, 2,2,Q with f
i
(x)'f

i
(x0) for at least one objective criterion. In other words, the

design x0 is Pareto optimal if there exists no other feasible design x which dominates it for
all objective criteria. The Pareto-optimal design set is the set of designs distributed along the
Pareto-optimal curve/surface de"ning the trade-o! between the di!erent objective criteria.
From a population of N designs, the number of P designs belonging to the Pareto-optimal
design set can be anywhere in the range of 1)P)N.

For a more elaborate description of the Pareto optimization procedure, the reader can
refer to Pareto [14] and Koski [15].

2.6. MULTI-CRITERIA GENETIC ALGORITHM (MGA) IMPLEMENTATION

The multicriteria optimization stated above entails "nding the set of solutions de"ning
the trade-o! (Pareto) curves spanning between the di!erent competing criteria. The
aforementioned optimization procedure can be conveniently performed using MGA as it
always works with a population of solutions rather than one solution at a time and is



Figure 1. Axially vibrating rod.
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particularly suitable for multi-objective optimization. The reader may refer to Goldberg
[16] for the comprehensive details on GA. The "tness function used here is based on
a distance metric related to the Pareto optimal set. Consequently, the chance of survival of
a design in the next generation depends on its relative distance from the current Pareto set
determined as

D (x)"minSA
f p
1n
!f

1
(x)

f p
1n

B
2
#A

f p
2n
!f

2
(x)

f p
2n

B
2
, n"1,2, n

p
, (17)

where n
p
is the number of existing Pareto design, f p

1n
, f p

2n
the objective value for the Pareto

design n and f
1
, f

2
the objective value of design x. It should be noted that f

1
and f

2
relate p2

and HI
W

in equations (9) and (10); and nl (0) and HI
W

in equations (12) and (13). The elements
of the design variable vector x correspond to a

n
, i"1,2, N in equation (8).

The relative distance between design x and the Pareto set is taken to be the distance to the
nearest Pareto design. Obviously, the distance of each Pareto design to the Pareto set is
zero. Consequently, the "tness F (x) of each design x is found as

F(x)"F
max

!D(x), (18)

where F
max

is a large number, chosen to be greater than the maximum of D(x) for all the
design vector x. The members of the next generation are chosen based on this "tness
criterion. The genetic operators of cross-over and mutation for the optimization are the
same as the conventional GA scheme [16]. The elitist strategy ensures the survival of the
previous Pareto set into the next generation. After these operations, a new Pareto set is
found. The procedure is repeated until convergence is achieved when there is no change in
the Pareto optimal set for a preassigned number of consecutive generations, at which point
the MGA run is terminated. As for GA, multiple runs are conducted and the overall Pareto
optimal set is taken as the combined set of Pareto optimal design found from all runs.

3. NUMERICAL RESULTS

As a numerical example of the formulation, the axial vibration of a rod shown in Figure 1
excited by its support motion w (t) has been studied. The following properties of the rod has
been considered for the numerical investigation: mass/unit length m"100 kg/m; axial
sti!ness EA"4)05]105 N; the viscous damping/unit length C

1
"5 Ns/m2; the strain rate

dependent damping C
2
"1000 N s. The undamped natural frequencies of an axially

vibrating rod are equally spaced in the frequency axis. The transfer function of the system
can be shown to be given by

H(u, x)"K A
1!cos k¸

sin k¸ B sin kx#cos kx K
2
, (19)

where k"J(u2m!iuc
1
)/(EA#iuc

2
) .



Figure 2. The system transfer function.
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The average energy of the excitation w (t) is E and arbitrarily taken to be 4)0 in the
numerical study. The band limit of the excitation (u

1
, u

2
) is assumed to be (1, 20) rad/s.

Figure 2 shows the system transfer function at x"¸/2. It should be noted that
the natural frequencies of the rod excited by its support motion are at 2, 6, 10, 14 and
18 rad/s. These are in fact the "rst, third, "fth, seventh and ninth natural frequencies of the
rod.

In the numerical investigations, the following parameters are taken: the number of
optimization variables is N"20; each a

n
is discretized by 127 points between 0)0001 and 4;

the number of population for each GA run is 1000, the mutation rate is taken to be 0)05.
Figure 3(a) and (b) show the critical PSD functions; and the trade-o! curve of the response
variance and the entropy rate of the excitation. In Figure 3(a), the critical PSD functions
which maximize the response variance p2 are shown for various levels of entropy rate HI

W
,

as marked in the trade-o! curve in Figure 3(b). In other words, these PSD functions also
represent the excitations which maximize the input entropy rate for various levels of
response variances. In Figure 3(b), case 1 shows the result when the maximization of the
response variance p2 receives the highest priority resulting in a nearly deterministic
harmonic input indicating a resonant phenomenon. The same result is obtained in the
previous studies [9, 10] using the linear programming method. Cases 2 and 3 show the
critical PSD functions for the increasing level of input entropy rate HI

W
as indicated in the

trade-o! curve in Figure 3(a). It can be observed from Figure 3(a) that the critical inputs
tend to be increasingly broad-banded as the maximization of input entropy rate HI

W
starts

to receive priority. However, the predominant input energy remains concentrated at the
"rst natural frequency of the system. Case 4 in Figure 3(a) represents the result when the
maximization of input entropy rate HI

W
is the dominant objective criterion. In this case, the

critical input is highly broad-banded. In fact, the exact analytical solution of the input in
this case is a band-limited noise, as discussed above. The maximum entropy rate for this
case can be calculated analytically. The maximum entropy rate HI

W
calculated by the

numerical method matches with the analytical result approximately within 95% accuracy
for the various GA runs. Thus, the result obtained using MGA de"ning the two endpoints
of the trade-o! curve in Figure 3(b) is validated.



Figure 3. (a) The critical input PSD functions: h, cases 1 and 3; e, case 2; s, case 4. (b) Trade-o! curve of the
response variance and input entropy rate: **, check; s, run 1; n, run 2; s, run 3.
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From the experience gathered from the numerical experiment, it is conjectured that the
trade-o! curve in this speci"c case of Figure 3(b) may be obtained simply by assigning the
dominant input energy at the "rst natural frequency of the system and distributing the
remaining energy equally in all the other frequencies in the band-limit of the excitation
spectrum. This curve is also shown in Figure 3(b) termed as &&check''. A similar result is also
obtained in references [9, 10] using calculus of variation when the non-preference
optimization method is utilized. It can be easily observed that this plot envelopes the result
obtained by the numerical method, serving again as the validation of the computer code.
Thus, Figure 3 acts as a validation of the numerical program against the results obtained by
other methods.

Figure 4(a) and (b) show the critical input PSD functions; and the trade-o! curve of the
mean response zero-crossing rate and the entropy rate of the excitation. In Figure 4(a),
cases 1}5 show the critical input PSD functions for various levels of input entropy rate HI

W
.

These inputs, in other words, represent the critical excitations which maximize the input



Figure 4. (a) The critical input PSD functions: h, cases 1; e, case 2; n, case; ], case 4; s, case 5. (b) The trade-o!
curve of the mean zero crossing rate versus input entropy rate (a"0): e, run 1; h, run 2; s, runs 3 and 4.
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entropy rate for various levels of the mean response zero crossing rate. Again, case 1 in
Figure 4(a) shows the critical input entropy rate when the maximization of the mean
response zero-crossing rate l(0) is given the priority. Note again that the critical input is
a highly narrow-banded signal with primary energy at the highest frequency in the
excitation band-width for this speci"c case. This may be explained by the fact that the
excitation with the dominant energy content at the highest frequency results in the
maximum velocity response variance, but minimum displacement response variance in
equation (7). Consequently, this input maximizes the mean response zero-crossing rate.
Next, when the trade-o! between the maximization of the input entropy rate and the mean
response zero-crossing rate is considered, the critical input PSD functions are shown in
cases 2}5, for increasing levels of input entropy rate. It can be observed from Figure 4(a)
that the critical inputs tend to be increasingly broad-banded. However, the predominant
energy in the critical inputs now shifts at the last natural frequency of the system for
a moderate level of entropy rate (cases 2}4). Although the primary energy is concentrated at
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the last natural frequency of the system, the rest of the input energy is now unevenly
distributed on the remaining input frequency band limit, perhaps with a bias to the other
natural frequencies of the system. The uneven energy distribution may also indicate the
e!ect of strong non-linearity in both the objective functions. When the maximization of
input entropy rate is given the priority, the critical input again becomes highly
broad-banded tending towards a band-limited white noise, as expected.

4. CONCLUSIONS

A novel numerical scheme is developed to generate the trade-o! curve of the maximum
system response versus the maximum disorder in the input when the random excitation
driving the linear system is partially speci"ed. The approach makes use of Pareto
optimization theory to deal with the con#icting requirement of system response
maximization and the disorder in the input excitation. The numerical implementation is
performed using a Multi-criteria Genetic Algorithm scheme to generate the trade-o! curve.

In this paper, the primary emphasis is placed on the development of the numerical
method. Only simple examples using a linear system are chosen to illustrate the method. In
this study, the uncertainty is considered only in the speci"cation of the input. However, the
uncertainty in the system parameters is not accounted for. However, the uncertainty in the
system parameters can also be important in many practical cases.

Additional studies are needed to extend the aforementioned analysis to incorporate the
system uncertainty in addition to the uncertainty in the inputs. Furthermore, the method
can be extended to the response of weakly non-linear systems using non-linear spectral
analysis methods using Volterra series or the Weiner Hermite expansion approach.

From the point of view of reliability analysis, a structural system may consist of several
elements each having multiple limit states. Consequently, a system can be con"gured as
simple as a series system where the components are connected in series; a parallel system
where the components are connected in parallel; a series}parallel or parallel}series system
where some components are connected in series and the others are in parallel or vice versa
leading to a complex network of con"gurations. It should be noted that only a single limit
state is considered for the failure analysis in this paper. Consequently, it will be of interest to
study the reliability of the linear parallel, series or combined systems due to an incompletely
speci"ed Gaussian load process. On the other hand, the method has to be extended to the
case when the excitations to the systems are modelled as multi-dimensional Gaussian vector
processes. All these aforementioned aspects require further investigation. Presently, some of
these aspects are being investigated by the authors and will be published subsequently.
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